GaussianProcess Class
Inherits from the Sampler class and augments pick and update with the mechanics of the GP method
function -- Kernel function definition. See the 'gp' module.
int -- Number of training samples required before sampler can be trained
str -- A string specifying the type of acquisition function used
float, optional -- The priority of exploration against exploitation
numpy.ndarray -- The hyperparameters of the Gaussian Process Inference Model
list -- List of regressor objects. See 'gp.types.RegressionParams'
float -- Mean of the training target outputs
int -- Number of tasks or, equivalently, number of target outputs
See also
Initialises the GaussianProcess class
Note
Currently only supports rectangular type restrictions on the
parameter space
Parameters: |
|
---|
Methods
__init__(lower, upper[, kerneldef, n_min, ...]) | Initialises the GaussianProcess class |
get_acq_func() | |
get_explore_priority() | |
get_hyperparams() | |
get_kerneldef() | |
get_min_training_size() | |
get_real_data() | |
learn_hyperparams() | Learns the kernel hyperparameters from the data collected so far |
pick([n_test, train]) | Picks the next location in parameter space for the next observation |
predict(Xq[, real]) | Infers the mean and variance of the Gaussian process at given locations |
print_kernel(kerneldef) | |
set_acq_name(acq_name) | |
set_explore_priority(explore_priority) | |
set_hyperparams(hyperparams) | |
set_kerneldef(kerneldef) | |
set_min_training_size(n_min) | |
train() | Trains the Gaussian process model |
update(uid, y_true) | Updates a job with its observed value |
update_regressors() | Update the regressors of the Gaussian process model |
update_y_mean() | Update the mean of the target outputs |