dora.regressors.gp.kernelΒΆ

Kernel module Defines basic kernel functions of the form:

funcname(x_p, x_q, par) that return a covariance matrix. x_p is n1*d, x_q is n2*d, the result should be n1*n2 par can be a scalar, array, or list of these.

All kernels must allow x_q=None, and efficiently compute the diagonal of K(x_p, x_p) as a (n1,) shaped vector.

Multi-task kernels must begin with mt_, and such kernels must use the last dimension of x_p and x_q as an indicator of the task.

This file also contains code for composing these kernels into multi-use objects.

Functions

auto_range(user_kernel)
cdist(XA, XB[, metric, p, V, VI, w]) Computes distance between each pair of the two collections of inputs.
chisquare(x_p, x_q[, eps])
compose(user_kernel)
describer(user_kernel)
gaussian(x_p, x_q, LS)
laplace(x_p, x_q, LS)
matern3on2(x_p, x_q, LS)
mt_weights(x_p, x_q, params)
named_target(covfn, fn_cache)
non_stationary(x_p, x_q, params) Implementation of Paciorek's kernel where length scale is defined as
nonstat_rr(x_p, x_q, params)
sin(x_p, x_q, params)
tree(x_p, x_q, params) Implementation of Paciorek's kernel where length scale is defined as
tree1D(x_p, x_q, params) Implementation of Paciorek's kernel where length scale is defined as

Classes

Printer([val])
Range(lowerBound, upperBound, initialVal)