dora.regressors.gp.trainΒΆ

Functions

add_data(newX, newY, regressor[, query, ...])
batch_start(opt_config, initial_values) Sets initial values of the optimiser parameters
chol_down(L, remIDList)
chol_up(L, Sn, Snn, Snn_noise_std_vec)
chol_up_insert(L, V12, V23, V22, ...)
condition(X, y, kernelFn, hyper_opt_config_copys)
learn(X, Y, cov_fn, optParams[, optCrition, ...])
learn_folds(folds, cov_fn, optParams[, ...])
make_folds(X, y, target_size[, method])
negative_log_marginal_likelihood(Y, L, alpha)
negative_log_prob_cross_val(Y, L, alpha)
optimise_hypers(criterion, optParams)
pack(theta, noisepar)
remove_data(regressor, remID[, query])
solve_triangular(a, b[, trans, lower, ...]) Solve the equation a x = b for x, assuming a is a triangular matrix.
unpack(theta, unpackinfo)

Classes

Delaunay Delaunay(points, furthest_site=False, incremental=False, qhull_options=None)
Folds(n_folds, X, Y, flat_y)