A Zipf discrete random variable.
Discrete random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Random variates.
Probability mass function.
Log of the probability mass function.
Cumulative density function.
Log of the cumulative density function.
Survival function (1-cdf --- sometimes more accurate).
Log of the survival function.
Percent point function (inverse of cdf --- percentiles).
Inverse survival function (inverse of sf).
Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
(Differential) entropy of the RV.
Expected value of a function (of one argument) with respect to the distribution.
Median of the distribution.
Mean of the distribution.
Variance of the distribution.
Standard deviation of the distribution.
Endpoints of the range that contains alpha percent of the distribution
Parameters: |
|
---|
Notes
The probability mass function for zipf is:
zipf.pmf(k, a) = 1/(zeta(a) * k**a)
for k >= 1.
zipf takes a as shape parameter.
Examples
>>> from scipy.stats import zipf
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> a = 6.5
>>> mean, var, skew, kurt = zipf.stats(a, moments='mvsk')
Display the probability mass function (pmf):
>>> x = np.arange(zipf.ppf(0.01, a),
... zipf.ppf(0.99, a))
>>> ax.plot(x, zipf.pmf(x, a), 'bo', ms=8, label='zipf pmf')
>>> ax.vlines(x, 0, zipf.pmf(x, a), colors='b', lw=5, alpha=0.5)
Alternatively, freeze the distribution and display the frozen pmf:
>>> rv = zipf(a)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1,
... label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
Check accuracy of cdf and ppf:
>>> prob = zipf.cdf(x, a)
>>> np.allclose(x, zipf.ppf(prob, a))
True
Generate random numbers:
>>> r = zipf.rvs(a, size=1000)