revrand.likelihoods.Binomial¶
- 
class revrand.likelihoods.Binomial¶
- Binomial likelihood class. - A logistic transformation function is used to map the latent function from the GLM prior into a probability. \[p(y_i | f_i) = \genfrac(){0pt}{}{n}{y_i} \sigma(f_i) ^ {y_i} (1 - \sigma(f_i))^{n - y_i}\]- where \(y_i\) is a target, \(f_i\) the value of the latent function corresponding to the target, \(n\) is the total possible count, and \(\sigma(\cdot)\) is the logistic sigmoid. \(n\) can also be applied per observation. - 
__init__()¶
- Initialize self. See help(type(self)) for accurate signature. 
 - Methods - Ey(f, n)- Expected value of the Binomial likelihood. - __init__- Initialize self. - cdf(y, f, n)- Cumulative density function of the likelihood. - df(y, f, n)- Derivative of Binomial log likelihood w.r.t. f. - dp(y, f, *args)- Derivative of Bernoulli log likelihood w.r.t.the parameters, \(\theta\). - loglike(y, f, n)- Binomial log likelihood. - Attributes - params- Get this object’s Parameter types. 
- 
