Likelihood Classes¶
Bernoulli |
Bernoulli likelihood class for (binary) classification tasks. |
Binomial |
Binomial likelihood class. |
Gaussian ([var, bounds, shape]) |
A univariate Gaussian likelihood for general regression tasks. |
Poisson ([tranfcn]) |
A Poisson likelihood, useful for various Poisson process tasks. |
Likelihood objects for inference within the GLM framework.
-
class
revrand.likelihoods.
Bernoulli
Bernoulli likelihood class for (binary) classification tasks.
A logistic transformation function is used to map the latent function from the GLM prior into a probability.
p(yi|fi)=σ(fi)yi(1−σ(fi))1−yiwhere yi is a target, fi the value of the latent function corresponding to the target, and σ(⋅) is the logistic sigmoid.
-
Ey
(f) Expected value of the Bernoulli likelihood.
Parameters: f (ndarray) – latent function from the GLM prior (f=Φw) Returns: Ey – expected value of y, E[y|f]. Return type: ndarray
-
cdf
(y, f) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. P(Y≤y).
- f (ndarray) – latent function from the GLM prior (f=Φw)
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f) Derivative of Bernoulli log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
Returns: df – the derivative ∂logp(y|f)/∂f
Return type: ndarray
-
dp
(y, f, *args) Derivative of Bernoulli log likelihood w.r.t.the parameters, θ.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
Returns: dp – the derivative ∂logp(y|f,θ)/∂θ for each parameter. If there is only one parameter, this is not a list.
Return type: list, float or ndarray
-
loglike
(y, f) Bernoulli log likelihood.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-
params
Get this object’s Parameter types.
-
-
class
revrand.likelihoods.
Binomial
Binomial likelihood class.
A logistic transformation function is used to map the latent function from the GLM prior into a probability.
p(yi|fi)=(nyi)σ(fi)yi(1−σ(fi))n−yiwhere yi is a target, fi the value of the latent function corresponding to the target, n is the total possible count, and σ(⋅) is the logistic sigmoid. n can also be applied per observation.
-
Ey
(f, n) Expected value of the Binomial likelihood.
Parameters: - f (ndarray) – latent function from the GLM prior (f=Φw)
- n (ndarray) – the total number of observations
Returns: Ey – expected value of y, E[y|f].
Return type: ndarray
-
cdf
(y, f, n) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. P(Y≤y).
- f (ndarray) – latent function from the GLM prior (f=Φw)
- n (ndarray) – the total number of observations
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f, n) Derivative of Binomial log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
- n (ndarray) – the total number of observations
Returns: df – the derivative ∂logp(y|f)/∂f
Return type: ndarray
-
loglike
(y, f, n) Binomial log likelihood.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
- n (ndarray) – the total number of observations
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-
-
class
revrand.likelihoods.
Gaussian
(var=Parameter(value=1.0, bounds=Positive(upper=None), shape=())) A univariate Gaussian likelihood for general regression tasks.
No transformation function is needed since this is (conditionally) conjugate to the GLM prior.
p(yi|fi)=1√2πσ2exp(−(yi−fi)22σ2)where yi is a target, fi the value of the latent function corresponding to the target and σ is the observation noise (standard deviation).
Parameters: var (Parameter, optional) – A scalar Parameter describing the initial point and bounds for an optimiser to learn the variance parameter of this object. -
Ey
(f, var) Expected value of the Gaussian likelihood.
Parameters: - f (ndarray) – latent function from the GLM prior (f=Φw)
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: Ey – expected value of y, E[y|f].
Return type: ndarray
-
cdf
(y, f, var) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. P(Y≤y).
- f (ndarray) – latent function from the GLM prior (f=Φw)
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f, var) Derivative of Gaussian log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: df – the derivative ∂logp(y|f)/∂f
Return type: ndarray
-
dp
(y, f, var) Derivative of Gaussian log likelihood w.r.t.the variance σ2.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: dp – the derivative ∂logp(y|f,σ2)/∂σ2 where sigma2 is the variance.
Return type: float
-
loglike
(y, f, var=None) Gaussian log likelihood.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-
-
class
revrand.likelihoods.
Poisson
(tranfcn='exp') A Poisson likelihood, useful for various Poisson process tasks.
An exponential transformation function and a softplus transformation function have been implemented.
p(yi|fi)=g(fi)yie−g(fi)yi!where yi is a target, fi the value of the latent function corresponding to the target, and g(⋅) is the tranformation function, which can be either an exponential function, or a softplus function (log(1+exp(fi)).
Parameters: tranfcn (string, optional) – this may be ‘exp’ for an exponential transformation function, or ‘softplus’ for a softplut transformation function. -
Ey
(f) Expected value of the Poisson likelihood.
Parameters: f (ndarray) – latent function from the GLM prior (f=Φw) Returns: Ey – expected value of y, E[y|f]. Return type: ndarray
-
cdf
(y, f) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. P(Y≤y).
- f (ndarray) – latent function from the GLM prior (f=Φw)
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f) Derivative of Poisson log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
Returns: df – the derivative ∂logp(y|f)/∂f
Return type: ndarray
-
loglike
(y, f) Poisson log likelihood.
Parameters: - y (ndarray) – array of integer targets
- f (ndarray) – latent function from the GLM prior (f=Φw)
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-