Likelihood ClassesΒΆ
Bernoulli |
Bernoulli likelihood class for (binary) classification tasks. |
Binomial |
Binomial likelihood class. |
Gaussian ([var, bounds, shape]) |
A univariate Gaussian likelihood for general regression tasks. |
Poisson ([tranfcn]) |
A Poisson likelihood, useful for various Poisson process tasks. |
Likelihood objects for inference within the GLM framework.
-
class
revrand.likelihoods.
Bernoulli
Bernoulli likelihood class for (binary) classification tasks.
A logistic transformation function is used to map the latent function from the GLM prior into a probability.
\[p(y_i | f_i) = \sigma(f_i) ^ {y_i} (1 - \sigma(f_i))^{1 - y_i}\]where \(y_i\) is a target, \(f_i\) the value of the latent function corresponding to the target, and \(\sigma(\cdot)\) is the logistic sigmoid.
-
Ey
(f) Expected value of the Bernoulli likelihood.
Parameters: f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\)) Returns: Ey – expected value of y, \(\mathbb{E}[\mathbf{y}|\mathbf{f}]\). Return type: ndarray
-
cdf
(y, f) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. \(P(Y \leq y)\).
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f) Derivative of Bernoulli log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
Returns: df – the derivative \(\partial \log p(y|f) / \partial f\)
Return type: ndarray
-
dp
(y, f, *args) Derivative of Bernoulli log likelihood w.r.t.the parameters, \(\theta\).
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
Returns: dp – the derivative \(\partial \log p(y|f, \theta)/ \partial \theta\) for each parameter. If there is only one parameter, this is not a list.
Return type: list, float or ndarray
-
loglike
(y, f) Bernoulli log likelihood.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-
params
Get this object’s Parameter types.
-
-
class
revrand.likelihoods.
Binomial
Binomial likelihood class.
A logistic transformation function is used to map the latent function from the GLM prior into a probability.
\[p(y_i | f_i) = \genfrac(){0pt}{}{n}{y_i} \sigma(f_i) ^ {y_i} (1 - \sigma(f_i))^{n - y_i}\]where \(y_i\) is a target, \(f_i\) the value of the latent function corresponding to the target, \(n\) is the total possible count, and \(\sigma(\cdot)\) is the logistic sigmoid. \(n\) can also be applied per observation.
-
Ey
(f, n) Expected value of the Binomial likelihood.
Parameters: - f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- n (ndarray) – the total number of observations
Returns: Ey – expected value of y, \(\mathbb{E}[\mathbf{y}|\mathbf{f}]\).
Return type: ndarray
-
cdf
(y, f, n) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. \(P(Y \leq y)\).
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- n (ndarray) – the total number of observations
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f, n) Derivative of Binomial log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- n (ndarray) – the total number of observations
Returns: df – the derivative \(\partial \log p(y|f) / \partial f\)
Return type: ndarray
-
loglike
(y, f, n) Binomial log likelihood.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- n (ndarray) – the total number of observations
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-
-
class
revrand.likelihoods.
Gaussian
(var=Parameter(value=1.0, bounds=Positive(upper=None), shape=())) A univariate Gaussian likelihood for general regression tasks.
No transformation function is needed since this is (conditionally) conjugate to the GLM prior.
\[p(y_i | f_i) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp\left(- \frac{(y_i - f_i)^2}{2 \sigma^2} \right)\]where \(y_i\) is a target, \(f_i\) the value of the latent function corresponding to the target and \(\sigma\) is the observation noise (standard deviation).
Parameters: var (Parameter, optional) – A scalar Parameter describing the initial point and bounds for an optimiser to learn the variance parameter of this object. -
Ey
(f, var) Expected value of the Gaussian likelihood.
Parameters: - f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: Ey – expected value of y, \(\mathbb{E}[\mathbf{y}|\mathbf{f}]\).
Return type: ndarray
-
cdf
(y, f, var) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. \(P(Y \leq y)\).
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f, var) Derivative of Gaussian log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: df – the derivative \(\partial \log p(y|f) / \partial f\)
Return type: ndarray
-
dp
(y, f, var) Derivative of Gaussian log likelihood w.r.t.the variance \(\sigma^2\).
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: dp – the derivative \(\partial \log p(y|f, \sigma^2)/ \partial \sigma^2\) where \(sigma^2\) is the variance.
Return type: float
-
loglike
(y, f, var=None) Gaussian log likelihood.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
- var (float, ndarray, optional) – The variance of the distribution, if not input, the initial value of variance is used.
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-
-
class
revrand.likelihoods.
Poisson
(tranfcn='exp') A Poisson likelihood, useful for various Poisson process tasks.
An exponential transformation function and a softplus transformation function have been implemented.
\[p(y_i | f_i) = \frac{g(f_i)^{y_i} e^{-g(f_i)}}{y_i!}\]where \(y_i\) is a target, \(f_i\) the value of the latent function corresponding to the target, and \(g(\cdot)\) is the tranformation function, which can be either an exponential function, or a softplus function (\(\log(1 + \exp(f_i)\)).
Parameters: tranfcn (string, optional) – this may be ‘exp’ for an exponential transformation function, or ‘softplus’ for a softplut transformation function. -
Ey
(f) Expected value of the Poisson likelihood.
Parameters: f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\)) Returns: Ey – expected value of y, \(\mathbb{E}[\mathbf{y}|\mathbf{f}]\). Return type: ndarray
-
cdf
(y, f) Cumulative density function of the likelihood.
Parameters: - y (ndarray) – query quantiles, i.e. \(P(Y \leq y)\).
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
Returns: cdf – Cumulative density function evaluated at y.
Return type: ndarray
-
df
(y, f) Derivative of Poisson log likelihood w.r.t. f.
Parameters: - y (ndarray) – array of 0, 1 valued integers of targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
Returns: df – the derivative \(\partial \log p(y|f) / \partial f\)
Return type: ndarray
-
loglike
(y, f) Poisson log likelihood.
Parameters: - y (ndarray) – array of integer targets
- f (ndarray) – latent function from the GLM prior (\(\mathbf{f} = \boldsymbol\Phi \mathbf{w}\))
Returns: logp – the log likelihood of each y given each f under this likelihood.
Return type: ndarray
-