|
double | logGaussian (const Eigen::VectorXd &x, const Eigen::VectorXd &mu, const Eigen::VectorXd &sigma) |
| Compute the log Gaussian distribution PDF with a diagonal covariance matrix. More...
|
|
MultiGaussian | coupledGaussianBlock (const Eigen::MatrixXd &mean, double coupledSD, double decoupledSD) |
|
double | logPDF (const Eigen::MatrixXd &theta, const MultiGaussian &input, const Eigen::MatrixXd &thetaMin, const Eigen::MatrixXd &thetaMax) |
| Compute the log PDF of a multivariate Gaussian distribution.
|
|
double | logPDF (const Eigen::VectorXd &theta, const MultiGaussian &input, const Eigen::VectorXd &thetaMin, const Eigen::VectorXd &thetaMax) |
| Compute the log PDF of a multivariate Gaussian distribution.
|
|
double | uniformLogPDF (const Eigen::MatrixXd &theta, const MultiGaussian &input, const Eigen::MatrixXd &thetaMins, const Eigen::MatrixXd &thetaMaxs) |
|
Eigen::MatrixXd | drawValues (const MultiGaussian &input, std::mt19937 &gen) |
| Draw a sample from a multivariate Gaussian distribution.
|
|
Eigen::MatrixXd | drawUniformValues (const Eigen::MatrixXd &min, const Eigen::MatrixXd &max, std::mt19937 &gen) |
|
std::vector< Eigen::MatrixXd > | drawFrom (const std::vector< distrib::MultiGaussian > &prior, std::mt19937 &gen, const std::vector< Eigen::MatrixXd > &mins, const std::vector< Eigen::MatrixXd > &maxs, const std::vector< bool > &uniformFlags) |
| Draw a sample from a multivariate Gaussian distribution.
|
|
std::vector< Eigen::VectorXd > | drawVectorFrom (const std::vector< distrib::MultiGaussian > &prior, std::mt19937 &gen, const std::vector< Eigen::VectorXd > &mins, const std::vector< Eigen::VectorXd > &maxs) |
| Draw a sample from a multivariate Gaussian distribution.
|
|
Namespace for probability distribution related functions.